Christofides, A., Howard, J. A. K., Spencer, J. L. \& Stone, F. G. A. (1982). J. Organomet. Chem. 232, 279-292.

Edelmann, F., Lubke, B. \& Behrens, U. (1982). Chem. Ber. 115, 1325-1331.
Egert, E. \& Sheldrick, G. M. (1985). Acta Cryst. A41, 262-268.
Sheldrick, G. M. (1996a). SADABS. Program for Empirical Absorption Correction of Area Detector Data. University of Göttingen, Germany.
Sheldrick, G. M. (1996b). SHELXS96. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1996c). SHELXL96. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1994). XP. Interactive Molecular Graphics Program. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1995). SMART and SAINT. Data Collection and Processing software for the SMART System. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Wadepohl, H. \& Pritzkow, H. (1991). Acta Cryst. C47, 2061-2063.

Acta Cryst. (1997). C53, 1356-1357

6a,7-Dihydro-2,6-dimethyl-7-phenyl-6H-chromeno[4,3- $d]$-1,2,4-triazolo[1,5-a]-pyrimidin-6a-ol \dagger

A. Yu. Kovalevsky, ${ }^{a}$ V. A. Chebanov, ${ }^{b}$ S. M. Desenko, ${ }^{b}$ S. A. Komykhov, ${ }^{b}$ V. D. Orlov, ${ }^{b}$ O. V. Shishinin ${ }^{a}$ and H. Meier ${ }^{c}$
${ }^{a}$ A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov str, Moscow 117813, Russia, ${ }^{\text {b }}$ Kharkov State University, Department of Chemistry, Svobody sq. 4, 310077 Kharkov, Ukraine, and ${ }^{c}$ University of Mainz, Institute of Organic Chemistry, D-55099 Mainz, Germany. E-mail: oleg@xray.ineos.ac.ru
(Received 28 November 1996; accepted 4 March 1997)

Abstract

In the title compound, $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2}$, the dihydropyrimidine and dihydropyran rings adopt a distorted sofa conformation. The phenyl substituent at C 7 and the hydroxy group at C6a adopt axial positions, whereas the methyl group at C6 is equatorial.

Comment

Derivatives of 1,2,4-triazolo[1,5-a]pyrimidine possess high biological activity, for example, as cardiovascular agents (Tsuda et al., 1986). The chemical and physiological characteristics of these compounds are directly related to their conformations. However, relevant data on

[^0]the structures of dihydro-1,2,4-triazolo[1,5-a]pyrimidines condensed with pyran rings, (I), or other heterocycles have not previously been available.

(I)

Torsion angles $\mathrm{N} 7 \mathrm{a}-\mathrm{C} 10 \mathrm{a}-\mathrm{N} 11-\mathrm{C} 11 \mathrm{a}$ and $\mathrm{Cl}-$ $\mathrm{Cla}-\mathrm{C} 11 \mathrm{a}-\mathrm{N} 11$ are 15.4 (4) and 9.4 (4) ${ }^{\circ}$, respectively. This indicates some loss of planarity of the conjugated system of the molecule, although the $\mathrm{Cla}-\mathrm{Clla}$, N11-C1la and C10a-N11 bond lengths [1.453 (4), 1.294 (3) and 1.381 (3) \AA, respectively] are evidence of the conjugation between the benzene ring, azomethine group and 1,2,4-triazole ring (Fig. 1).

Fig. 1. A view of (I) with displacement ellipsoids drawn at the 50% probability level. The H atoms are omitted for clarity.

The conformations of both the pyrimidine and pyran rings can be described as distorted sofas. The puckering coordinates (Zefirov, Palyulin \& Dashevskaya, 1990) are $S=0.63, \theta=50.9$ and $\varphi=18.3$ for the pyrimidine, and $S=0.72, \theta=44.7$ and $\varphi=10.2$ for the pyran moiety, where S is the puckering degree, and θ and φ are polar angles which describe the ring conformation type (values of these angles for ideal conformations are: sofa $\theta=45, \varphi=0$; half chair $\theta=45, \varphi=30$). Comparison of the title compound with cis-3-bromo-2,3-dihydro-2-phenyl-4H-1-benzopyran-4-one and ($2 R, 3 R$)-3,5,7-tri-hydroxy-2-($2 R^{*}, 3 R^{*}$)-3-(4-hydroxy-3-methoxyphenyl)-2-hydroxymethyl-(1,4-benzodioxan-6-yl)-4-chromanone
shows that the dihydropyranone ring adopts a distorted half-chair conformation and annelation of the ring concerned leads to the change in its conformation (Cantrell \& Hockstein, 1982; Lotter \& Wagner, 1983). An alkyl substituent in the second position has an equatorial orientation (Geddes, Sheldrick \& Akrigg, 1980; Chambers \& Marfat, 1994). Comparison of (I) with 5,7-diphenyl-6-oxy-6,7-dihydropyrazolo[1,5-a]pyrimidine, the puckering coordinates for which are $S=0.61, \theta=46.2$ and $\varphi=$ 28.9, indicates that annelation of the dihydropyrimidine ring results in a decrease in its twisting (Desenko et al., 1993).

The crystal is composed of a racemic mixture of the ($6 R, 6 \mathrm{a} S, 7 R$) and ($6 S, 6 \mathrm{a} R, 7 S$) isomers. The phenyl and hydroxyl substituents on C7 and C6a are both in axial positions [the $\mathrm{Cl} 10 \mathrm{a}-\mathrm{N} 7 \mathrm{a}-\mathrm{C} 7-\mathrm{C} 15$ and $\mathrm{O} 12-\mathrm{C} 6 \mathrm{a}-$ C11a-Cla torsion angles are 95.7 (3) and -104.2 (3) ${ }^{\circ}$, respectively]. The methyl group is equatorial; the C4a-O5-C6-C14 and C11a-C6a-C6-C14 torsion angles are $-178.7(2)$ and $-168.1(2)^{\circ}$, respectively.

In the crystal, the molecules of (I) form chains due to intermolecular hydrogen bonds $\mathrm{O} 12-\mathrm{H} 12 \mathrm{O} \cdots \mathrm{N} 10^{i}$, characterized by $\mathrm{H} \cdots \mathrm{N} \quad 1.92(4) \AA$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ $174(4)^{\circ}$ [symmetry code: (i) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{3}{2}-z$].

Experimental

Compound (I) was obtained from 2,9-dimethyl-3-phenyl-3,7-dihydro- $2 H-1,2,4$-triazolo $\left[1^{\prime}, 5^{\prime}-a^{\prime}\right]$ pyrimido [4,5- d]benzo[b]pyran by dissolving the latter in DMSO and allowing slow aerial oxidation to occur over a period of two weeks. Spectral characteristics of (I) are as follows: UV spectrum (isopropanole, Specord M40 spectrometer): $\Lambda \max (\varepsilon / 1000)$: 313 (20.7), 376 (20.8); IR spectrum (KBr tablets, Specord 75 IR spectrometer): $\nu(\mathrm{C}=\mathrm{N}) 1618 \mathrm{~cm}^{-1}$; PMR spectrum (DMSO- d_{6}, Varian VXR-300 spectrometer): δ (p.p.m.): 6.8$7.9(8 \mathrm{H}, m), 7.94(1 \mathrm{H}, s, 6-\mathrm{H}), 7.18(1 \mathrm{H}, s, \mathrm{OH}), 5.59(1 \mathrm{H}$, $s, 3-\mathrm{H}), 3.68(1 \mathrm{H}, q, J=6.4 \mathrm{~Hz}, 2-\mathrm{H}), 2.32\left(3 \mathrm{H}, s, 13-\mathrm{CH}_{3}\right)$, $1.41\left(3 \mathrm{H}, d, J=6.4 \mathrm{~Hz}, 14-\mathrm{CH}_{3}\right)$. Single crystals were grown by diffusion of benzene into a solution of (I) in DMSO.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \\
& M_{r}=346.38 \\
& \text { Monoclinic } \\
& P 2_{1} / n \\
& a=10.770(2) \AA \\
& b=10.045(2) \AA \\
& c=16.499(4) \AA \\
& \beta=105.07(2)^{\circ} \\
& V=1723.6(6) \AA^{3} \\
& Z=4 \\
& D_{x}=1.335 \mathrm{Mg} \mathrm{~m}^{-3} \\
& D_{m} \text { not measured }
\end{aligned}
$$

Data collection

Siemens $P 3 / P C$ diffractom-	$R_{\text {int }}=0.023$
eter	$\theta_{\max }=25.04^{\circ}$

$\theta-2 \theta$ scans
Absorption correction: none
2618 measured reflections
2467 independent reflections 1685 reflections with
$I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.201$
$S=1.152$
2365 reflections
241 parameters
H atoms riding
$h=0 \rightarrow 12$
$k=-11 \rightarrow 0$
$l=-19 \rightarrow 18$
2 standard reflections every 98 reflections intensity decay: 5\%
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0575 P)^{2}\right.$
$+0.7176 P$]
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.037$
$\Delta \rho_{\text {max }}=0.17 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.19 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from International Tables for
Crystallography (Vol. C)

Refinement on F^{2} was carried out on all reflections except for 66 with very negative F^{2} or having $\left|\left(F_{o}-F_{c}\right)\right|>4 \sigma\left(F_{o}\right)$ and therefore flagged by the user for potential systematic errors. Standard uncertainties on C-C bond distances are $0.004 \AA$.

Data collection: P3/PC Diffractometer Program (Siemens, 1989). Cell refinement: P3/PC Diffractometer Program. Data reduction: SHELXTL (Sheldrick, 1994). Program(s) used to solve structure: $S H E L X T L$. Program(s) used to refine structure: SHELXTL. Molecular graphics: SHELXTL. Software used to prepare material for publication: SHELXTL.

The authors are grateful to DAAD and ISSEP (Grant No. APU 063026) and the Russian Foundation for Basic Research (Grant No. 94-03-8338) for financial support. They are also indebted to the Russian Foundation for Basic Research (Project No. 96-07-89187) for the licence to use the Cambridge Structural Database.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BM1134). Services for accessing these data are described at the back of the journal.

References

Cantrell, J. S. \& Hockstein, G. S. (1982). Acta Cryst. B38, 981-983.
Chambers, R. J. \& Marfat, A. (1994). J. Heterocycl. Chem. 31, 14011409.

Desenko, S. M., Orlov, V. D., Lipson, V. V., Shishkin, O. V., Potekhin, K. A. \& Struchkov, Yu. T. (1993). Khim. Geterotsikl. Soedin. (Chem. Heterocycl. Comput.), pp. 109-114.
Geddes, A. J., Sheldrick, B. \& Akrigg, D. (1980). Acta Cryst. B36, 3193-3196.
Lotter, H. \& Wagner, H. (1983). Z. Naturforsch. Teil C, 38, 339-341.
Sheldrick, G. M. (1994). SHELXTL. Structure Determination Programs. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1989). P3/PC Diffractometer Program. Version 3.13. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Tsuda, N., Mishina, T., Obata, M., Araki, K., Inui, A. \& Nakamura, T. (1986). Japn Kokai Tokyo Koho, Jpn Pat. 61/227, 584 (C1.C07 D487/04).
Zefirov, N. S., Palyulin, V. A. \& Dashevskaya, E. E. (1990). J. Phys. Org. Chem. 3, 147-153.

[^0]: \dagger Alternative name: 6a,7-dihydro-2,6-dimethyl-7-phenyl-6H-[1,2,4]triazolo[$\left.2^{\prime}, 3^{\prime}: 1,2\right]$ pyrimidino $[5,4-c]$ chromen-6a-ol.

